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Abstract

PSI-BLAST remains one of the popular tools for search-
ing remote homologs in sequence databases. We recently
demonstrated that hybrid alignment can function as the
alignment core for PSI-BLAST without loss of sensitivity.
Here, we start to exploit the benefits of hybrid alignment.
We show that incorporating information about the subopti-
mal alignments, otherwise ignored in PSI-BLAST, already
improves the sensitivity of our enhanced version of PSI-
BLAST. More interestingly, we find a set of sequences on
which our tool disagrees with the classification given by
SCOP. Careful examination points to a possible misclassi-
fication in SCOP. Cross-referencing with two other meth-
ods of protein structure classification, CATH and DALI,
supports this view, indicating that the enriched information
from suboptimal alignments is valuable for detecting more
weakly homologous sequences.

KEYWORD: sequence alignment, hybrid algorithm,
PSI-BLAST, suboptimal alignment, forward-backward al-
gorithm

1 Introduction

Much research has been devoted to understanding evo-
lutionary relationships among biological entities such as
genes, regulatory sequences and proteins. These studies
provide many opportunities to further our understanding of
the structural and functional properties of these biological
entities. Sequence alignment remains perhaps the most fun-
damental approach involved in revealing such biological re-
lationships. Although decades of research and development
in sequence alignment analysis has made sequence align-
ment a well-established technique, the expanding number

of genomes encompassing a wider evolutionary history and
the need to detect weaker and weaker sequence homology
require continuous improvement in the sensitivity of align-
ment algorithms.

The Smith-Waterman algorithm probably has been the
most widely used algorithm in sequence database searches.
It always finds the optimal local alignment between two se-
quences and has been implemented in the database search
tool, SSEARCH [27, 23]. Popular bioinformatics tools,
such as BLAST [2] and FASTA [24], incorporate heuris-
tic versions of the Smith-Waterman algorithm in order to
make large sequence database searches more practical. Re-
cently, Yu and Hwa proposed a variation of the Smith-
Waterman algorithm known as hybrid alignment [31]. In
contrast to the Smith-Waterman algorithm, hybrid align-
ment is backed by a theory of statistics that allows one to
quickly and reliably assignE-values for arbitrary scoring
systems, including position-specific scoring systems. This
feature is particularly relevant in iterative approaches,such
as PSI-BLAST [2] or SAM [16], which dynamically adapt
their scoring systems. These iterative search tools outper-
form the non-iterative searchs performed by BLAST and
FASTA [21].

The hybrid algorithm has the same computational com-
plexity as the Smith-Waterman algorithm and has been
combined with the heuristic approaches of BLAST, ren-
dering the hybrid algorithm computationally efficient [30].
It has also been tested as the alignment core of a
well established iterative search framework, namely PSI-
BLAST [17]. The performance of Hybrid PSI-BLAST
compares well with the original PSI-BLAST in detecting
sequence homologs.

In this paper, we extend our study of the hybrid algorithm
in PSI-BLAST. Motivated by the work of Levitt et al. [12],
which demonstrated that the use of suboptimal alignments



improves both the structure homology modeling as well as
the sequence-structure alignment, we specifically explore
the information contained in suboptimal alignments, which
PSI-BLAST ignores. Since not only the optimal alignment,
but also the suboptimal alignments, contribute to the final
alignment score reported by the hybrid algorithm, it is a
natural extension for the hybrid algorithm to search the sub-
optimal alignment space when building a new model from
the sequences found in previous iterations.

We use a database derived from SCOP in order to eval-
uate our new approach. We compare our new approach
to NCBI PSI-BLAST and the previous hybrid PSI-BLAST
(Hybrid PSI-BLAST). In examining the false positives re-
ported by the extended hybrid PSI-BLAST (extHybrid PSI-
BLAST), we find that many of them are classified as true
positives according to two other popular protein classifica-
tion systems, namely CATH [22] and DALI [13]. We dis-
cuss the discrepancy in the classification of these ambigu-
ous sequences and its effect on the evaluation of sequence
database search tools.

The remainder of this paper is organized as follows.
Section 2 presents some background on sequence align-
ment statistics. Section 3 provides a general review of the
forward-backward algorithm, which we use to exploit sub-
optimal alignments in refining sequence models. In Sec-
tion 4, we describe the implementation of the forward-
backward algorithm in Hybrid PSI-BLAST and discuss the
choice of the pseudocount constant. Section 5 evaluates the
extended Hybrid PSI-BLAST approach, and gives a per-
formance comparison between the hybrid and the original
version of PSI-BLAST. The differences in the classification
of some ambiguous sequences from three protein structure
classification methods, namely SCOP, CATH and DALI, is
also discussed therein. Finally, Section 6 concludes the pa-
per and proposes directions for future research.

2 Review of sequence alignment statistics

Pairwise sequence alignment algorithms assign a score
to the alignment of each pair of sequences. Generally, a
larger score implies a closer biological relationship. Itera-
tive sequence alignment tools, such as PSI-BLAST or SAM,
build on these pairwise sequence alignment algorithms. In
each iteration the pairwise sequence alignment algorithm is
used to search a large sequence database leading to a list of
hits ordered by their scores. From the high scoring align-
ments, a multiple alignment is created. That, in turn, deter-
mines the scoring system of the next iteration. The crucial
step between iterations is deciding which of the hits to keep
as putative members of the family (and thus include in the
multiple alignment) and which of the hits to reject as irrel-
evant. A reliable quantitative criterion for this decisionis a
cutoff in theE- or p-value.

The statistical significance expressed by theE-value
judges the quality of an alignment relative to all alignments
that one would obtain by aligning randomly chosen (and
thus unrelated) sequences. Therefore, it can only be calcu-
lated if it is known how the alignment scores of randomly
chosen sequences are distributed. For alignment algorithms
that do not allow gaps, i.e., insertions or deletions, in their
alignments, this alignment score distribution of random se-
quences is known. It has been rigorously proven [14, 15, 11]
that the expected number of gapless local alignments of two
sequences of lengthM andN with a score larger thanΣ,
i.e., theE-value, follows, in the limit of infinitely long se-
quences, the universal form

E(Σ) = KMNe−λΣ. (1)

This form neither depends on the scoring parameters nor on
the sequence model, i.e., the frequencies with which each
amino acid appears in the random sequences, as long as only
local alignments are considered. However, the two param-
etersλ andK do depend on the scoring parameters. The
Karlin-Altschul theory [14, 15, 11] also describes this de-
pendence. Thus, anE-value can be assigned to a gapless
alignment without any further need for computation which
made the original version of BLAST so successful.

However, to detect weak sequence homologies, gaps
must be allowed [23]. According to many numerical stud-
ies [10, 18, 29, 1, 20], in the presence of gaps theE-values
still follow the universal form Eq. (1). However, the numer-
ical values of the two parametersλ andK are not known.

There are various approaches to solving this dilemma.
For large gap costs, approximate analytical formulas exist
for λ [19, 26]. For a small sub-class of scoring systems,
an analytical formula forλ that is valid for all gap costs [6]
has been derived. The current version of PSI-BLAST uses a
heuristic method to estimateλ for different scoring matrices
but at fixed gap cost [2, 25]. In addition, there are numerical
approaches [7, 8] that rapidly determineλ.

However, all of these approaches are either heuristic or
restricted to certain regimes of the alignment parameters.
A possible escape route from this dilemma is an alterna-
tive alignment algorithm that has been proposed by Yu and
Hwa [31]. The algorithm is called hybrid alignment since
it is a combination of the Smith-Waterman algorithm and
probabilistic schemes like hidden Markov models. In hy-
brid alignment the score assigned to a sequence pair is from
the summation over all the possible alignments instead of
from the most probable one alignment as in the Smith-
Waterman algorithm. Nevertheless theE-values are still
calculated according to Eq. (1) with the parameterλ tak-
ing the universal valueλ = 1 completely independently of
the scoring system. This simplification of the statistics does
not decrease the sensitivity of the algorithm compared to
the traditional Smith-Waterman algorithm [30]. The basic
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computational complexity of the alternative algorithm is the
same as for Smith-Waterman and it can be combined with
heuristic schemes similar to the ones used in BLAST to re-
duce the computational effort. Most importantly, the theo-
retical prediction of the universal form Eq. (1) withλ = 1
holds even for position-dependent gap costs. This predic-
tion has also been numerically verified [30] for a large range
of scoring systems with position-specific gap costs taken
from the PFAM [3] database. The inability to calculateE-
values for position-specific gap costs is precisely the reason
why PSI-BLAST does not adopt a this feature, in spite of
the expectation that such a position-specific gap cost would
increase sensitivity significantly if it were possible to im-
plement it. Thus, using hybrid alignment in PSI-BLAST
would not only provide a theoretical basis for the calcula-
tion of E-values with the current fixed gap cost scoring sys-
tems but also enable us to utilize the suboptimal alignments
and open up the possibility to the future incorporation of
more sensitive position-specific gap costs.

3 Forward-backward Algorithm

The forward-backward algorithm, which is also called
Baum-Welch algorithm, was originally proposed by
Baum [4] in studying natural language processing. It can
be used to estimate the parameters of a Hidden Markov
Model (HMM). With the introduction of HMMs to the
sequence alignment research, the forward-backward algo-
rithm has been widely used in many bioinformatics tools.
As the name suggests, it consists of two parts: the for-
ward algorithm and the backward algorithm. Both of them
can be implemented by dynamic programming just as the
Smith-Waterman algorithm and the Needleman-Wunsch al-
gorithm. In fact, the forward algorithm is rather close to
the Needleman-Wunsch algorithm in that the forward algo-
rithm just replaces the ”max” operation in the Needleman-
Wunsch algorithm with the ”sum” operation. It thus calcu-
lates the sum of the probabilities of all alignments as op-
posed to just the probability of the optimal alignment. This
change will be trivial if the probability of the optimal align-
ment is dominant, however, it is expected to capture more
information if there are many suboptimal alignments with
comparable probabilities to the probability of the optimal
alignment. The latter case is very common for aligning
two remote homologs. The forward algorithm computes the
sum of the probabilities of all alignments ending in nodej
of the HMM and letteri of the sequence for all pairs(i, j).
The backward algorithm uses a similar dynamic program-
ming scheme as the forward algorithm to calculate the sum
of the probabilities of all alignments that start at nodej of
the HMM and letteri of the sequence. By coupling the for-
ward and backward algorithm, the posterior probability of
the occurence of any amino acid at every model position can

be estimated, a process called posterior decoding.
Here is a brief summary of the forward-backward al-

gorithm in the context of hybrid alignment. LetΩ be
the model of lengthm, and X = (x1x2 · · ·xn) be the
sequence to be aligned with the model. On the align-
ment lattice, the forward algorithm can be used to cal-
culate the total probabilityfS

i,j of all alignment paths
reaching any stateS at any position(i, j), whereS ∈
{M(match), I(insert), D(delete)}, i = 1 . . . n, j =
1 . . .m via the following recursions:

fM
i,j = 1 + ηj−1ωj−1(xi−1)(f

M
i−1,j−1

+µI1
j−1f

I
i−1,j−1 + µD1

j−1f
D
i−1,j−1)

f I
i,j = µI2

j fM
i−1,j + νI

j f I
i−1,j (2)

fD
i,j = µD2

j−1f
M
i,j−1 + νD

j−1f
D
i,j−1

The boundary conditions are:fM
0,j = fM

i,0 = 1 andf I
0,j =

fD
i,0 = 0, wherei = 0 . . . n, j = 0 . . .m. The parame-

ter ωj(xi) is the ratio of the emission probabilityqj,xi
of

amino acidxi over its background probabilitypxi
at model

positionj, i.e.,ωj(xi) = qj,xi
/pxi

. The transition probabil-
itiesηj , µ

I1
j , µI2

j , µD1

j , µD2

j , νI
j andνD

j satisfy the following
constraint:

ηj + µI2
j + µD2

j = 1

ηjµ
I1
j + νI

j = 1 (3)

ηjµ
D1

j + νD
j = 1

Using the forward algorithm we can find the position
(sE , mE) at whichZi,j is maximum across the entire lat-
tice, whereZi,j = fM

i,j + µI1
j f I

i,j + µD1

j fD
i,j

Once we chose(sE , mE) to be the end of the alignment,
the backward algorithm can be used to calculate the total
probabilitybS

i,j of all alignment paths starting from stateS
at position(i, j) and ending at the point(sE , mE), where
1 ≤ i ≤ sE , 1 ≤ j ≤ mE via the recursions:

bM
i−1,j−1 = ηj−1ωj−1(xi−1)b

M
i,j + µI2

j−1b
I
i,j−1

+µD2

j−1b
D
i−1,j (4)

bI
i−1,j−1 = µI1

j−1ηj−1ωj−1(xi−1)b
M
i,j + νI

j−1b
I
i,j−1

bD
i−1,j−1 = µD1

j−1ηj−1ωj−1(xi−1)b
M
i,j + νD

j−1b
I
i−1,j

The boundary conditions are:bM
sE ,mE

= 1, bI
sE ,mE

= µI1
mE

,
bD
sE ,mE

= µD1

mE
andbS

sE+1,j = bS
i,mE+1 = 0, wherei =

0 . . . sE , j = 0 . . .mE .
The probability of seeing amino acidA at model position

j in sequenceX can then be obtained as follows:

Pr(A, j, X |Ω) =

∑
xi=A fM

i,j ∗ bM
i,j

ZsE ,mE

(5)
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This probability is then summed over all the training se-
quences. After proper normalization over the 20 amino
acids, the new emission probability of the occurrence of any
amino acid at positionj is computed.

4 Extending Hybrid PSI-BLAST

As part of a previous work [17], a position-specific ver-
sion of the hybrid algorithm was implemented in version
2.0 of NCBI PSI-BLAST by replacing the Smith-Waterman
algorithm with the hybrid algorithm for assigning scores to
the sequence hits and assessing the statistical significance
of the scores in PSI-BLAST. Hybrid PSI-BLAST has es-
sentially the same user interface with only a small number
of new options added for hybrid alignment and retains many
of the features of the original NCBI PSI-BLAST.

Hybrid PSI-BLAST calculates the alignment score of ev-
ery subject sequence using the hybrid algorithm, i.e., the
forward algorithm described above. However, once the se-
quences are selected to be included in the model for the
new round, the Smith-Waterman algorithm is executed in
order to construct the optimal pairwise alignment between
each such sequence and the query. The weighted number
of times an amino acidA occurs in columnj of the multi-
ple alignment induced by these pairwise alignments yields
the normalized frequencyqj,A, which is later used to deter-
mine the substitution score at positionj for amino acidA.
This process is identical for Hybrid PSI-BLAST and regular
PSI-BLAST.

It is fairly natural to extend Hybrid PSI-BLAST to in-
tegrate the information about the suboptimal alignments
in model building, since Hybrid PSI-BLAST already uses
such information in the calculation of the alignment score
assigned to each sequence pair. Thus, instead of simply
counting how often an amino acidA occurs in columnj of
the multiple alignment, we will use the posterior probabil-
ities P (A, j, X |Ω) to determine the contribution of amino
acid A in sequenceX to columnj of the multiple align-
ment. If the optimal alignment between sequenceX and
modelΩ is dominant, its probability will be the leading term
in P (j, X |Ω). In this case,P (A, j, X |Ω) has a single peak
that is close to 1 for the amino acidA appearing in the opti-
mal alignment and 0 for the other 19 amino acids. Thus we
simply ”count” the dominant amino acid in this position in
the same way as PSI-BLAST and Hybrid PSI-BLAST. Oth-
erwise, the distribution ofP (A, j, X |Ω) is flatter. A single
sequence will contribute more than one amino acid to the
multiple alignment at columnj albeit with a reduced weight
reflecting the uncertainty of the alignment at this position.

Since we already implemented the forward algorithm to
calculated the alignment scores, we just replaced the rou-
tines responsible for calculating the alignment weight ma-
trix by an implementation of the backward algorithm ac-
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Figure 1. Performance comparison for extHy-
brid PSI-BLAST with different pseudocount
constants.

cording to Eq. (4) and the decoding of the posterior prob-
abilities through Eq. (5) for the amino acids at each model
position for every sequence hit that is selected to build the
matrix. The new emission probabilities are then obtained

by qj,A =

∑
X

Pr(A,j,X|Ω)∑
X,a

Pr(a,j,X|Ω)

Usually we are limited by the number of the aligned se-
quences – especially during the first iteration – some vari-
ation in the occurrence of certain amino acids may well
be missed. Thus it is likely that a matrix derived directly
from theqj,A may overfit the data. To address this prob-
lem, we recruited the pseudocount approach used in NCBI
PSI-BLAST to alleviate the effect of the incompleteness of
the sequence sample. In NCBI PSI-BLAST, the actual tar-
get frequency of amino acidA at positionj is computed as
follows:

q′j,A =
αqj,A + βgj,A

α + β
(6)

wheregj,A =
∑

b qj,be
λµsA,b . α andβ are pseudocount

constants, controlling the weights of the prior knowledge
about the target frequencies and the actual observed val-
ues from the sample. Here,sA,b is the alignment score for
amino acid pairA andb in some nonposition-specific ma-
trix, such as BLOSUM62.λµ is the parameterλ in Eq. (1)
for the gapless alignment. It is given as the solution of the
equation

∑
A,b pApbe

λµsA,b = 1 wherepA andpb are the
background probabilities of amino acidA and b, respec-
tively.

5 Hybrid versus NCBI comparison

In order to accurately evaluate the performance of vari-
ous sequence alignment algorithms or tools, it will be ideal
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Figure 2. Performance comparison using different counting methods

to have a database in which all the relationships among se-
quences are known. But this ideal database never exists be-
cause it is impossible to trace back millions and billions of
years to verify the true evolutionary history of the proteins
or other biological sequences. Thus, we can only approx-
imate the true relationships by inferring homology from
structural and functional clues found so far. SCOP is among
the early attempts to create such a database and its classifi-
cation largely relies on the judgment of human experts. In
many ways, SCOP has been considered as the standard of
protein structure classification, and thus it has been used
in many studies for evaluation of sequence alignment algo-
rithms [5].

In assessing the performance of extHybrid PSI-BLAST,
we followed this method. The astral compendium (AS-
TRAL SCOP 1.59, http://astral.berkeley.edu/) provides a
database that contains only sequences with less than 40%
pairwise sequence identit [9]. We use all sequences in the
database as queries to carry out an all-vs-all comparison.
However, one sequence was excluded since we suspect that
its true relationship may not be correctly reflected in the
SCOP classification. This sequence, namely the represen-
tative of the superfamily c.11.1. was consistently misclassi-
fied by all versions (Hybrid and NCBI) of the algorithms
for nearly all parameter choices (as it turns out that the
newest release of ASTRAL indeed changes its classifica-
tion to c.10.3, which is even a different fold from the old as-
signment). There are then 4382 sequences with 88171 pairs
of true homologos in the remaining database. After pool-
ing together the reported hits and ranking them by E-value,
we counted the number of true homologs and the number
of non-homologs below various cutoff E-values. For each
E-value cutoff, the Coverage is computed by dividing the
number of true homologs by the total number of true re-
lationships in the database, which indicates how good the

program can recover homologies in the database. On the
other hand, the Errors Per Query (EPQ), which is the quo-
tient of the number of non-homologs and the total number
of queries, tells us how likely the program would make a
mistake. The plot of EPQ versus Coverage as a paramet-
ric function of the cutoff E-value demonstrates the tradeoff
between the sensitivity and selectivity of the program.

One consideration we had about the extHybrid PSI-
BLAST is the choice of the pseudocount constant. Since
NCBI PSI-BLAST has undergone years of optimization, it
is not clear whether the pseudocount constant used by NCBI
is also optimal for HYBRID. Specially we expected that we
might have to add less pseudocount since the contribution of
the suboptimal alignments already provide counts for amino
acids that are absent in the optimal aligments. Thus, we
tried different values of the pseudocount constantβ (since
only the ratioβ/α enters in Eq. (6), it is enough to vary
one of these constants). We found that the default value
for NCBI PSI-BLAST is also optimal for extHybrid PSI-
BLAST, as shown in Figure 1.

Having determined the pseudocount for calculating the
position-specific alignment weight matrix, we went ahead
to evaluate our new approach by comparing the extHy-
brid PSI-BLAST with Hybrid PSI-BLAST and NCBI PSI-
BLAST. In order to assess the changes in sensitivity result-
ing from the incorporation of the information of the subopti-
mal alignments, we used two different evaluation schemes.
One of them, which we will refer to as straight counting
from here on, is the one used previously [5, 8] where two
sequences are considered homologs if they are members of
the same superfamily of SCOP and non-homologs if not.

However, a concern about the accuracy of the SCOP
classification has been recently raised by some researchers.
More specifically, the concern is that some of the proteins
that are classified in different superfamilies in SCOP might
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Figure 3. Performance comparison between two counting meth ods for NCBI PSI-BLAST and extHybrid
PSI-BLAST, respectively.

actually still be homologs. This concern becomes criti-
cal as sequence comparison algorithms become sensitive
enough to actually find such very weak homologies. Un-
der the straight counting scheme, an algorithm that finds
such a weak homolog would be penalized since it would
be classified as an error according to the straight counting.
To circumvent this difficulty, some suggested that any hit
that is in a different superfamily but in the same fold as the
query should be ignored instead of being counted as a non-
homolog, because we do not have sufficient information to
make the judgement of whether such a hit corresponds to a
true homolog or not. Here, we refer to this latter counting
method as conservative counting.

We applied both counting approaches to evaluate the
performance of extHybrid PSI-BLAST and NCBI PSI-
BLAST. The result in Figure 2(a) exhibits that extHybrid
PSI-BLAST is comparably or slightly more sensitive than
NCBI PSI-BLAST in detecting homologous sequences in
the database when straight counting is applied. When cov-
erage is low, extHybrid PSI-BLAST makes more errors
than Hybrid PSI-BLAST but still fewer than NCBI PSI-
BLAST. However, extHybrid improves greatly over Hybrid
PSI-BLAST when coverage is high. The picture becomes
quite different when conservative counting is applied. Fig-
ure 2(b) clearly shows that extHybrid PSI-BLAST outper-
forms both NCBI PSI-BLAST and Hybrid PSI-BLAST in
this case.

Figure 3 highlights the difference between straight and
conservative counting for NCBI PSI-BLAST and extHy-
brid PSI-BLAST, respectively. It can be easily seen that
the counting method makes hardly any difference for NCBI
PSI-BLAST. This implies that all false hits of NCBI PSI-
BLAST are real non-homologs. On the contrary, for ex-

tHybrid PSI-BLAST there is a noticeable disagreement be-
tween the results for straight counting and for conservative
counting. Thus, we suspect that the performance of extHy-
brid PSI-BLAST is already beyond what the SCOP classi-
fication with straight counting can measure, i.e., extHybrid
PSI-BLAST can find some homologs that are so remotely
related that they are classified into different superfamilies
in SCOP.

To further augment this point, we collected hits with E-
value less than 0.01 for extHybrid PSI-BLAST that are false
hits under the straight counting scheme but undecided ac-
cording to conservative counting. We examined their re-
lationships by referring to another popular protein classifi-
cation database CATH [22], which combines manual and
automated processes to organize the proteins. There are 39
ambiguous sequence pairs found by extHybrid PSI-BLAST
that are classified as non-homolog pairs in SCOP. In CATH,
almost all of these proteins pairs (35 out of 39) are classified
as homologs. The exceptions are 3 sequence pairs that are
not classified at all in CATH and one sequence pair (d1jtdb
vs. d1k3ia3, the one with the largest E-value of 0.009) that
is classified as non-homologous. These 39 sequence pairs
involve 31 sequences, listed in Table 1.

To further investigate the possible homologies uncov-
ered by extHybrid PSI-BLAST, we also submitted the co-
ordinate files of the 35 pairs that are considered homologs
in CATH to DaliLite, which is the structure comparison
and database search engine for another protein classifica-
tion system DALI. The result shows that except for two very
short sequences (∼ 50 amino acids in length) the Z-score for
each pair is above 10. As for the root-mean-square devia-
tion (RMSD) ofα-carbon atoms, 22 pairs share structures
within 3Å RMSD, 11 pairs within 4̊A RMSD and 2 pairs
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Table 1. Ambiguous sequences
SCOP NAME SCOP ID CATH ID SCOP NAME SCOP ID CATH ID
d1hg3a c.1.1.1 3.20.20.90 d1a4ya c.10.1.1 3.80.10.10
d1thfd c.1.2.1 3.20.20.90 d1yrga c.10.1.2 3.80.10.10
d1rpxa c.1.2.2 3.20.20.90 d1fqva2 c.10.1.3 3.80.10.10
d1dbta c.1.2.3 3.20.20.90 d1h6ta2 c.10.2.1 3.80.10.10
d2tpsa c.1.3.1 3.20.20.90 d1h6ua2 c.10.2.1 3.80.10.10
d2dora c.1.4.1 3.20.20.90 *d1jl5a c.10.2.6 3.80.10.10
d1ep3a c.1.4.1 3.20.20.90 d1dcea3 c.10.2.2 3.80.10.10
d1d3ga c.1.4.1 3.20.20.90 d1tfi g.41.3.1 2.20.25.10
d1gox c.1.4.1 3.20.20.90 d1qyp g.41.9.1 2.20.25.10
d1ltda1 c.1.4.1 3.20.20.90 d1i50i2 g.41.9.1 2.20.25.10
d1h7wa2 c.1.4.1 3.20.20.90 d1en2a2 g.3.1.1 N/A
d1ea0a2 c.1.4.1 N/A d1fjna g.3.7.3 N/A
d1zfja1 c.1.5.1 3.20.20.90 d1hf2a1 b.80.3.1 N/A
d1ak51 c.1.5.1 3.20.20.90 d1ea0a1 b.80.4.1 N/A
d1jr1a1 c.1.5.1 3.20.20.90 d1jtdb b.69.5.2 2.130.10.30

d1k3ia3 b.69.1.1 2.130.10.80

within 6Å RMSD. These findings provide a strong evidence
for these sequence pairs to be classified as homologs.

6 Conclusion

In this paper, we have extended our previous work on the
hybrid algorithm by incorporating information about sub-
optimal alignments in the refining process of the sequence
models in PSI-BLAST. This is achieved by implementing
the forward-backward algorithm in place of the routines for
building the alignment matrix in HYBRID PSI-BLAST. We
also experimented with various values for the pseudocount
constant and found that the default value for NCBI PSI-
BLAST is optimal for extHybrid PSI-BLAST as well.

It turns out that extHybrid PSI-BLAST and NCBI PSI-
BLAST are very close in their performance, with extHybrid
PSI-BLAST being slightly more sensitive than NCBI PSI-
BLAST if the regular evaluation method using the SCOP
classification is employed. However, if we take some cau-
tion in the classification of the SCOP database and use
a conservative counting method in evaluating the perfor-
mance, we find that extHybrid PSI-BLAST outperforms
NCBI PSI-BLAST, primarily due to the differences in the
false positives that are identified by these two alignment
programs, i.e., the ”errors” NCBI PSI-BLAST makes are
mostly true errors, where as many of the ”errors” extHybrid
PSI-BLAST makes are potential homologs. For the collec-
tion of those ”errors” made by extHybrid PSI-BLAST with
reported E-value less than 0.01, we found that most of them
are classified as homologs in CATH and DALI. We con-
clude that extHybrid PSI-BLAST reaches a sensitivity that
exceeds what can be reliably measured by the SCOP classi-
fication.

Here we only investigate one feature provided by hybrid
alignment. There are many attributes available to the hybrid
algorithm but lacking in the Smith-Waterman algorithm
which have not been explored. The most prominent one is
the ability to handle position-specific gap costs, which takes
into account the different indel (insertion/deletion) propen-
sities along the protein sequences. It is expected that it is
more likely to have an indel in loop regions of a protein
family than in its core regions, which has a more stable
structure. This information is thought to be valuable in im-
proving the sensitivity of the alignment algorithm, but is
not utilized in PSI-BLAST because of a fundamental limi-
tation of the underlying theory of the alignment score statis-
tics for the Smith-Waterman alignment. Based on the work
described in this paper, it is possible for us to extend the
forward-backward algorithm for calculating the gap prob-
abilities in a position-specific fashion and to examine the
potential effect on searching remotely related sequences.
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