Eighth Problem Set for Physics 846 (Statistical Physics I)

Fall quarter 2003

Important dates: Nov 27 no class, Dec 11 9:30am-11:18am final exam
Due date: Thursday, Nov 20

22. Sum of independent random variables

8 points
The stochastic variables X and Y are independent and Gaussian distributed with first moment $\langle X\rangle=\langle Y\rangle=0$ and standard deviations $\sigma_{X}=\sigma_{Y}=1$. A new stochastic variable Z is constructed from these two variables by $Z=X^{2}+Y^{2}$.
a) Find the characteristic function $f_{Z}(k)$ of Z.
b) Compute the moments $\langle Z\rangle,\left\langle Z^{2}\right\rangle$, and $\left\langle Z^{3}\right\rangle$ using the explicit formula for the moments of Gaussian distributions which we derived in the lecture.
c) Compute the first three cumulants from the moments.

23. Random walk

12 points
A one dimensional random walker is a particle on a one-dimensional lattice. In each time step it chooses to jump one lattice site to the left with probability p or one lattice site to the right with probability $1-p$. Assuming that the walker starts at position 0 the position Y_{N} of such a random walker after N time steps can therefore be written as $Y_{N}=X_{1}+X_{2}+\ldots+X_{N}$ where the X_{i} are i.i.d. stochastic variables which take the two values -1 and 1 with probability p and $1-p$ respectively.

a) Calculate the average position $\left\langle Y_{N}\right\rangle$ of the random walker after N steps.
b) Calculate the standard deviation $\sigma_{Y_{N}}$ of the random walker after N steps.
c) Calculate the probability that the random walker returns to its starting point after an even number N of steps, i.e., $\operatorname{Pr}\left\{Y_{N}=0\right\}$. (Hint: Determine how many of the possible configurations of the X_{i} sum up to zero and what the individual probability of these configurations is. Remember that the number of possibilities to choose a subset of size k from a set of total size N is $\left.\binom{N}{k}=\frac{N!}{k!(N-k)!}.\right)$
d) Use Stirling's approximation N ! $\approx \sqrt{2 \pi} N^{N+1 / 2} e^{-N}$ to calculate the "return probability" obtained in c) in the limit of many time steps (large N.)

