Department of Physics The Ohio State University

Seventh Problem Set for Physics 846 (Statistical Physics I)

Fall quarter 2003

Important dates: Nov 11 no class, Nov 27 no class, Dec 11 9:30am-11:18am final exam

Due date: Tuesday, Nov 18

19. Shape of a lambda line

A PVT system has a line of continuous phase transitions (a lambda line) separating two phases, I and II, of the system. The molar heat capacity c_P and the thermal expansivity α_P are different in the two phases. Compute the slope $(dP/dT)_{\text{coex}}$ of the λ line in terms of the temperature T, the molar volume v, $\Delta c_P = c_P^I - c_P^{II}$, and $\Delta \alpha_P = \alpha_P^I - \alpha_P^{II}$. (Hint: Look at our derivation of the Clausius-Clapeyron equation and keep in mind which quantities you could use instead of the chemical potential μ in the case of a continuous phase transition.)

20. Coin tossing

Three coins are tossed. This can be represented by a sample space S of eight elements, $S = \{TTT, TTH, THT, THH, HTT, HTH, HHT, HHH\}$, each of which has the same probability 1/8. Answer the following questions by explicitly writing down the events as subsets of the sample space S.

- a) Find the probability of getting *no heads*.
- b) Find the probability of getting at least one head.
- c) Find the probability of getting at least two heads.
- d) Show that the event "heads on the first coin" and the event "tails on the last coin" are independent.
- e) Show that the event "exactly two coins heads" and the event "three coins heads" are dependent and mutually exclusive.

Hint: You may want to wait with working on this problem until after Thursday's class.

21. Characteristic function

Consider an exponentially distributed stochastic variable X, i.e., a stochastic variable with

$$P_X(x) = \begin{cases} 0 & x < 0\\ Ce^{-\lambda x} & x \ge 0 \end{cases}$$

with two constants C and λ .

- a) Determine the constant C as a function of λ .
- b) Calculate the characteristic function $f_X(k)$ for this variable.
- c) Calculate all moments of X.
- d) Calculate all cumulants of X.

Hint: You may want to wait with working on this problem until after Thursday's class.

12 points

$8 \ points$

10 points