Fourth Problem Set for Physics 846 (Statistical Physics I)

Fall quarter 2003

Important dates: Oct 21 9:30am-10:18am make-up class,
Oct 30 10:30am-12:18pm midterm exam,
Nov 11 no class, Nov 27 no class, Dec 11 9:30am-11:18am final exam

Due date: Thursday, Oct 23

10. Response functions

Compute the heat capacity at constant magnetic field $C_{H, n}$, the susceptibilities $\chi_{T, n}$ and $\chi_{S, n}$, and the thermal expansivity $\alpha_{H, n}$ for a magnetic system as functions of n, M, and T given that the mechanical equation of state is $M=n D H / T$ and the heat capacity is $C_{M, n}=n c$, where M is the magnetization, H is the magnetic field, n is the number of moles, D is a constant, c is the molar heat capacity, and T is the temperature.

11. Rubber band

12 points
Experimentally one finds that for a rubber band

$$
\left(\frac{\partial J}{\partial L}\right)_{T}=\frac{a T}{L_{0}}\left(1+2\left(\frac{L_{0}}{L}\right)^{3}\right) \quad \text { and } \quad\left(\frac{\partial J}{\partial T}\right)_{L}=\frac{a L}{L_{0}}\left(1-\left(\frac{L_{0}}{L}\right)^{3}\right)
$$

where J is the tension, $a=10^{-2} \mathrm{~N} / \mathrm{K}$, and $L_{0}=0.5 \mathrm{~m}$ is the length of the band at $T_{0}=290 \mathrm{~K}$ when no tension is applied. The mass of the rubber band is held fixed.
a) Compute $(\partial L / \partial T)_{J}$ and discuss its physical meaning.
b) Show that $d J$ is an exact differential and find the equation of state $J(L, T)$.
c) Show that the internal energy if interpreted as a function of temperature T and length L does not depend on L. (Hint: The formula in problem 8 a) may be helpful.)
d) Assume that the heat capacity at constant length is $C_{L}=1 J / K$. Find the change in temperature during stretching the band reversibly and adiabatically to a length of 1 m and the work necessary to perform this stretching.

12. Osmotic pressure

How does a tree manage to get water up into its leafs? It makes use of the "osmotic pressure" that can act against gravity. The osmotic pressure arises if a sugar solution is in contact with pure water through a semi-permeable membrane, i.e., a membrane that can pass water molecules but not sugar molecules. We want to derive an expression for the osmotic pressure π. To this end we consider a setup of two chambers separated by a mechanically fixed semipermeable membrane. One chamber contains pure water while the other chamber contains a sugar solution. Water molecules can pass through the semi-permeable membrane as they wish. Since the membrane is mechanically fixed, the pressure in the two chambers can be controlled independently and we will fix it at P_{0} on the water side and at P on the side of the sugar solution. This corresponds to an osmotic pressure of $\pi \equiv P-P_{0}$. We also keep the temperature T of the system constant. We denote the number of moles of water molecules in the sugar solution chamber by n_{W} and the number of moles of sugar molecules by n_{S}. Thus, the concentration of sugar in the sugar solution is $x_{S}=n_{S} /\left(n_{S}+n_{W}\right)$ and we will assume that this concentration is small. The Gibbs free energy for the chamber with the sugar solution is

$$
G\left(P, T, n_{S}, n_{W}\right)=n_{W} \mu_{W}^{(0)}(P, T)+n_{S} \mu_{S}^{(0)}(P, T)-\lambda \frac{n_{S} n_{W}}{n_{S}+n_{W}}+n_{W} R T \ln \left(1-x_{S}\right)+n_{S} R T \ln \left(x_{S}\right)
$$

where $\mu_{W}^{0}(P, T)$ and $\mu_{W}^{(0)}(P, T)$ are the chemical potentials for water and sugar molecules by themselves, λ is a constant describing the interaction between water and sugar molecules and the last two terms originate from the mixing.
a) Calculate the chemical potential $\mu_{W}\left(P, T, x_{S}\right)$ of the water molecules in the sugar solution.
b) Expand your result from a) for small x_{S}.
c) Write down the conditions for thermodynamic equilibrium between the two chambers.
d) Express the difference in chemical potentials $\mu_{W}^{(0)}(P, T)-\mu_{W}^{(0)}\left(P_{0}, T\right)$ in terms of the osmotic pressure π, the volume V of the chamber with the sugar solution and the number n_{W} of moles of water in the chamber with the sugar solution. Since water is very hard to compress you may assume that the volume V does not change when you vary the pressure from P_{0} to P and when you add the sugar. (Hint: look at $(\partial G / \partial P)_{T}$.)
e) Combine your result into a relation between π, V, n_{S}, and T. This relation is called van't Hoff's law.

