Stochastic description of the ideal gas

Ideal gas in a box: \(N \) independent particles in a volume \(V \)

Each particle has a velocity \(\vec{v} \)
- \(\vec{v} \) change all the time by interaction with other particles and the wall

\(N \) large \(\Rightarrow \) number of particles with given velocity \(\vec{v} \) constant

\(\Rightarrow \) probability distribution for velocity

\[p_{\vec{v}}(\vec{v}) \text{ time independent} \]

Calculate pressure on a wall:

Look at particles with velocity \(\vec{v} \):

- Within time \(dt \) all particles will velocity \(\vec{v} \) within the shaded volume \(dV \) hit the wall.

\[dV = A \Delta v \, dt \]

- Each particle exchange momentum \(2m \Delta v \)

\[\Rightarrow \] the number of particles with velocity \(\vec{v} \) within \(dV \) is

\[dN = \frac{3}{2} \rho \Delta v \, p_{\vec{v}}(\vec{v}) \, dt \]
Total momentum transfer on area A in time dt:

$$\sum_{\nu>0} N_v u_v^2 P_v(\nu) dt d^3\Omega$$

Total force on area A:

$$F = \sum_{\nu>0} N_v u_v^2 P_v(\nu) d^3\Omega$$

Total pressure

$$P = \frac{N}{V} \sum_{\nu>0} u_v^2 P_v(\nu) d^3\Omega$$

Since N is isotropic:

$$\int u_v^2 P_v(\nu) d^3\Omega = \int u_x^2 P_v(\nu) d^3\Omega = \int u_y^2 P_v(\nu) d^3\Omega$$

$$\Rightarrow \int u_v^2 P_v(\nu) d^3\Omega = \frac{1}{3} \int \nabla^2 P_v(\nu) d^3\Omega$$

$$\Rightarrow PV = N \frac{m}{3} \langle \vec{V}^2 \rangle = \frac{2}{3} N \frac{1}{2} m \langle \vec{V}^2 \rangle = \frac{2}{3} N \langle E_{\text{kin}} \rangle = \frac{2}{3} \frac{N}{N_A} k_B T$$

Compare with $PV = nRT$

$$\Rightarrow \langle E_{\text{kin}} \rangle = \frac{3}{2} \frac{R}{N_A} T \equiv \frac{3}{2} k_B T$$

"Temperature is average kinetic energy of the particle"
System with discrete states

\[N: \text{number of states} \]

system completely described by \(\gamma_i \): \(\gamma_i \) is probability of system to be in state \(i \) for \(i = 1, \ldots, N \)

\[\sum_{i=1}^{N} \gamma_i = 1 \]

Entropy describes "amount of disorder"
\(\Rightarrow \) entropy depends only on \(\gamma_i \).

Define

\[S = -k_B \sum_{i=1}^{N} \gamma_i \ln \gamma_i \]

This entropy is an extensive variable:

\[
\begin{array}{c|c|c}
\gamma_i^{(1)} & \gamma_0^{(2)} & \text{state of total system } (1,2) , \ N_1 N_2 = N \\
N_1 S^{(1)} & N_2 S^{(2)} & \end{array}
\]

\[
S_{\text{total}} = -k_B \sum_{i=1}^{N} \gamma_i^{(1)} \ln \gamma_i^{(1)}
\]

\[
= -k_B \sum_{i=1}^{N} \gamma_i^{(2)} \ln \gamma_i^{(2)}
\]

\[
= -k_B \sum_{i=1}^{N} \gamma_i^{(1)} \gamma_i^{(2)} \ln \gamma_i^{(1)} - k_B \sum_{i=1}^{N} \gamma_i^{(2)} \ln \gamma_i^{(2)}
\]

\[= S^{(1)} + S^{(2)} \]
Classical N-particle system

\(\vec{Q}_i \): generalized position of particle
\(\vec{p}_i \): generalized momentum of particle

System described by

\[S(\vec{Q}_1, ..., \vec{Q}_N, \vec{p}_1, ..., \vec{p}_N) = \mathcal{P}(\vec{Q}_1, ..., \vec{Q}_N, \vec{p}_1, ..., \vec{p}_N) \]

notation: \(\vec{X}^N = (\vec{Q}_1, ..., \vec{Q}_N, \vec{p}_1, ..., \vec{p}_N) \) “point in phase space”

\[S = S(\vec{X}^N) \]

Analogous definition of entropy

\[S = -k_B \int d\vec{X}^N g(\vec{X}^N) \ln [g_N(\vec{X}^N)] \]

\(k_B \): dimensionful constant
III.4 Summary

- Concepts:
 - probability
 - stochastic variable
 - distribution function, probability density
 - characteristic function
 - moment
 - cumulant
 - correlation function
 - independent variable
 - Boltzmann constant
 - microscopic definition of entropy

- Facts:
 - central limit theorem
 - law of large numbers
 - temperature as average kinetic energy
 - Maxwell distribution

- Tools:
 - handling expectation values
 - Gaussian integrals